Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 14(1)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38248411

RESUMO

Pap smear screening is a widespread technique used to detect premalignant lesions of cervical cancer (CC); however, it lacks sensitivity, leading to identifying biomarkers that improve early diagnosis sensitivity. A characteristic of cancer is the aberrant sialylation that involves the abnormal expression of α2,6 sialic acid, a specific carbohydrate linked to glycoproteins and glycolipids on the cell surface, which has been reported in premalignant CC lesions. This work aimed to develop a method to differentiate CC cell lines and primary fibroblasts using a novel lectin-based biosensor to detect α2,6 sialic acid based on attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and chemometric. The biosensor was developed by conjugating gold nanoparticles (AuNPs) with 5 µg of Sambucus nigra (SNA) lectin as the biorecognition element. Sialic acid detection was associated with the signal amplification in the 1500-1350 cm-1 region observed by the surface-enhanced infrared absorption spectroscopy (SEIRA) effect from ATR-FTIR results. This region was further analyzed for the clustering of samples by applying principal component analysis (PCA) and confidence ellipses at a 95% interval. This work demonstrates the feasibility of employing SNA biosensors to discriminate between tumoral and non-tumoral cells, that have the potential for the early detection of premalignant lesions of CC.


Assuntos
Nanopartículas Metálicas , Lectinas de Plantas , Proteínas Inativadoras de Ribossomos , Sambucus nigra , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/diagnóstico , Lectinas , Ácido N-Acetilneuramínico , Ouro , Linhagem Celular
2.
Polymers (Basel) ; 15(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139971

RESUMO

In the present work, electrospun membranes of polyvinylpyrrolidone (PVP) nanofibers were manufactured using extracts and phenolic fractions of Dysphania ambrosioides (epazote), Opuntia ficus-indica (nopal), and Tradescantia pallida (chicken grass). The characterization of the membranes was carried out by scanning electron microscopy and Fourier transform infrared spectroscopy. The membranes synthesized through the use of the extracts generally showed a slight decrease in the diameter of the fibers but an increase in the size of the pores due to the presence of nanoparticles (rosaries) on the surface of the fibers, while the membranes synthesized using the phenolic fraction demonstrated an inversely proportional relationship between the compounds of this family with the diameter of the fibers and the size of the pore, allowing to elucidate part of the polymerization mechanisms of PVP nanofibers, in addition to proposing a reaction mechanism in the interaction between PVP and phenolic compounds for surface functionalization. Likewise, we demonstrate that the generation of reaction seeds through functionalization allows the addition of other compounds to the fibers in the membranes synthesized using the complete extract.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...